3.1.3 \(\int \sec ^2(c+d x) (a+a \sec (c+d x)) \, dx\) [3]

Optimal. Leaf size=47 \[ \frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/2*a*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d+1/2*a*sec(d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3872, 3852, 8, 3853, 3855} \begin {gather*} \frac {a \tan (c+d x)}{d}+\frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x) \sec (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) (a+a \sec (c+d x)) \, dx &=a \int \sec ^2(c+d x) \, dx+a \int \sec ^3(c+d x) \, dx\\ &=\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} a \int \sec (c+d x) \, dx-\frac {a \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 47, normalized size = 1.00 \begin {gather*} \frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 47, normalized size = 1.00

method result size
derivativedivides \(\frac {a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a \tan \left (d x +c \right )}{d}\) \(47\)
default \(\frac {a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a \tan \left (d x +c \right )}{d}\) \(47\)
norman \(\frac {\frac {3 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(87\)
risch \(-\frac {i a \left ({\mathrm e}^{3 i \left (d x +c \right )}-2 \,{\mathrm e}^{2 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}-2\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(93\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+a*tan(d*x+c))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 58, normalized size = 1.23 \begin {gather*} -\frac {a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, a \tan \left (d x + c\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*a*tan(d*x +
c))/d

________________________________________________________________________________________

Fricas [A]
time = 2.94, size = 74, normalized size = 1.57 \begin {gather*} \frac {a \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - a \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(a*cos(d*x + c)^2*log(sin(d*x + c) + 1) - a*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*a*cos(d*x + c) +
a)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \sec ^{2}{\left (c + d x \right )}\, dx + \int \sec ^{3}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c)),x)

[Out]

a*(Integral(sec(c + d*x)**2, x) + Integral(sec(c + d*x)**3, x))

________________________________________________________________________________________

Giac [A]
time = 0.48, size = 80, normalized size = 1.70 \begin {gather*} \frac {a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*(a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(a*tan(1/2*d*x + 1/2*c)^3
 - 3*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

Mupad [B]
time = 1.06, size = 75, normalized size = 1.60 \begin {gather*} \frac {3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))/cos(c + d*x)^2,x)

[Out]

(3*a*tan(c/2 + (d*x)/2) - a*tan(c/2 + (d*x)/2)^3)/(d*(tan(c/2 + (d*x)/2)^4 - 2*tan(c/2 + (d*x)/2)^2 + 1)) + (a
*atanh(tan(c/2 + (d*x)/2)))/d

________________________________________________________________________________________